skip to main content


Search for: All records

Creators/Authors contains: "Lam, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As a follow-on to a previous study on secondary eyewall formation (SEF) in a simulation of Hurricane Matthew (2016), this study investigates the emergence and maintenance of an asymmetric rainband updraft region that leads to an SEF event. Under moderate deep-layer environmental wind shear, the storm develops a quasi-stationary rainband complex with intense, persistent updrafts in its left-of-shear, downwind end. Using a budget of equivalent potential temperatureθE, it is demonstrated that the maintenance of the left-of-shear updraft is aided by a mesoscale cold pool induced by rainband stratiform cooling which interacts with the storm’s moist envelope of high-θEair. An extended period of destabilization occurs through differential horizontal advection ofθEin the boundary layer, which continuously replenishes the moist instability that would otherwise be depleted by the updrafts. The initial lifting of the updraft is found to be the result of buoyancy advection resulting from the density contrast between the surface cold pool and the inner-core high-θEair. A potential vorticity (PV) budget analysis shows that these left-of-shear updrafts generate low- to midlevel PV through diabatic heating and boundary layer processes, which shapes the local PV enhancement and propagates cyclonically downwind. Meanwhile, in the mid- to upper levels, eddy PV flux convergence and PV generation continue to occur in the stratiform precipitation extending downwind into the upshear quadrants, which substantially increases the azimuthal mean PV at the radius of the developing secondary eyewall and marks the occurrence of the axisymmetrization process.

     
    more » « less
  2. Abstract

    The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to the lower atmosphere. Previous studies indicate the KCE responded dynamically across glacial and interglacial periods throughout the Pliocene‐Pleistocene. However, the response of the KCE during Pleistocene super‐interglacials has not been examined in detail. We present a ∼2.2 Ma record of X‐ray fluorescence elemental data from Ocean Drilling Program Hole 1207A and employ hierarchical clustering techniques to demonstrate paleoenvironmental changes around the KCE. Time‐frequency analysis identifies significant heterodyne frequencies, which suggests there were nonlinear interactions between high‐latitude and low‐latitude climate regulating expansion and contraction of the North Pacific Subtropical Gyre prior to the onset of the Mid‐Pleistocene Climate Transition (MPT). We observe two periods of elevatedlnCa/Ti, which may represent sustained warmth with northward migrations of the KCE in the northwestern Pacific. These intervals correspond to Marine Isotope Stages 29‐25, 15, and 11‐9 and occur around recent climatic transitions, the MPT and Mid‐Brunhes Event. Northward expansion of the subtropical gyre during these exceptionally warm interglacials would have delivered more heat and moisture to the high latitudes of the northwest Pacific. Furthermore, enhanced evaporation from the warm KCE vented to the lower atmosphere may have preconditioned the Northern Hemisphere for ice volume growth during two of the most recent periods of climate transition.

     
    more » « less